
 

 

Scientific Bulletin of the “Petru Maior”

Vol. 13 (XXX) no. 1, 2016

ISSN-L 1841-9267 (Print), ISSN 2285-438X (Online), ISSN 2286-3184 (CD-ROM)

 

Optimal Switch Configuration in Software-Defined Networks

Béla GENGE1, János SZTRIK2

1“Petru Maior” University of Tîrgu Mureş
1Nicolae Iorga Street, No. 1, 540088, Tîrgu Mureş, Romania

1e-mail: bela.genge@ing.upm.ro
2University of Debrecen

2Egyetem tér, No. 1, 4032, Debrecen, Hungary
2e-mail: sztrik.janos@inf.unideb.hu

Abstract

The emerging Software-Defined Networks (SDN) paradigm facilitates innovative ap-

plications and enables the seamless provisioning of resilient communications. Never-

theless, the installation of communication flows in SDN requires careful planning in

order to avoid configuration errors and to fulfill communication requirements. In this

paper we propose an approach that installs automatically and optimally static flows in

SDN switches. The approach aims to select high capacity links and shortest path rout-

ing, and enforces communication link and switch capacity limitations. Experimental

results demonstrate the effectiveness and scalability of the developed methodology.

Keywords: Software-Defined Networks, OpenFlow, integer linear programming

1 Introduction

An emerging paradigm in traditional IP networks

is the replacement of local router-based decisions with

global routing decision software. A prominent enabler

of this trend is OpenFlow, a protocol designed to en-

sure remote access to the forwarding pane of a net-

work switch [1]. OpenFlow separates control from for-

warding, enabling the implementation of more com-

plex traffic management techniques. Besides Open-

Flow, a key advancement in the field is the Software-

Defined Networks (SDN) paradigm. SDN provides the

means to create virtual networking services and to im-

plement global networking decisions. SDN relies on

OpenFlow to enable communications with remote de-

vices and it is considered to revolutionize the way de-

cisions are implemented in switches and routers.

Despite its indisputable advantages, it should be

noted that SDN is an emerging paradigm and its un-

derstanding, benefits, but most importantly its disad-

vantages require careful examination. While several

studies have revealed that SDN may indeed enhance

the resilience of communication networks, especially

in the industrial sector [2, 3], the provisioning of com-

munication flows in SDN switches requires careful

planning to avoid configuration errors and to fulfill

communication requirements. To this end, communi-

cation flows, hereinafter called simply flows, may be

subject to various requirements including Quality of

Service (QoS) pertaining to real-time packet delivery,

security requirements, e.g., the presence of intrusion

detection systems (IDS), reliability of communication

paths. Besides these aspects, the provisioning of com-

munication flows needs to account for the hardware

limitations of communication lines and SDN switches.

These may significantly limit the capacity of links, and

the maximum number of rules that may be installed in

SDN switches.

This paper alleviates the aforementioned issues by

developing an approach that automatically and opti-

mally install flows in SDN switches. The approach

leverages an optimization problem that aims to install

flows on the highest capacity links and using the short-

est path routing. Subsequently, the problem encapsu-

lates several constraints that ensure that capacity limi-

tations are satisfied.

Besides these aspects, the methodology embraces

c©2016 Published by ”Petru Maior” University Press. This

is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

25



Python software modules that call the Solving Con-

straint Integer Programs tool to derive an optimal so-

lution, and to configure the SDN switches by means of

the Floodlight SDN controller.

The remaining of this work is structured as follows.

Section 2 provides a brief overview of related studies.

Section 3 presents the developed SDN switch config-

uration methodology, while Section 4 provides the ex-

perimental results. The paper concludes in Section 5.

2 Related work

Several recent studies demonstrated the benefits

of SDN-enabled communication infrastructures and

identified key challenges in adopting this emerging

technology. Yonghong Fu et al. [7] developed Orion,

a hybrid hierarchical control plane for large-scale net-

works. Orion defines three planes: the domain physi-

cal network, the tier 0 control plane consisting of area

controllers, and the tier 1 control plane consisting of

a distributed set of domain controllers. Tuncer et al.

[8] developed an SDN-based management and control

framework for backbone networks. The approach fol-

lowed a hierarchical and modular structure to support

large-scale topologies and the simple integration of

various management applications. The work of Tuncer

also proposed a network planning algorithm based on

the uncapacitated facility location problem. In [9] the

authors developed Dionysus, a system for consistent

network updates in SDN. Dionysus builds the graph of

network update dependencies and schedules these up-

dates by taking into account the performances of net-

work switches. To eliminate packet losses [10] pro-

posed zUpdate, a solution that uses packet labeling for

zero packet losses during network updates. In com-

parison to these works, this work places an emphasis

on the optimal configuration of SDN networks. It is

aimed at delivering a starting point, which may then

be adopted in the development of more complex net-

work design problems.

3 Developed approach

This section presents the developed SDN configura-

tion methodology. It starts with an overview on the de-

veloped methodology and it continues with a descrip-

tion of the network configuration problem and of the

developed software.

3.1 Overview

The architectural overview of the methodology de-

veloped in this paper is depicted in Figure 1. As shown

in this figure, the methodology comprises of three

main components. First, the SDN configuration soft-

ware, i.e., the main contribution of this work, which

glues together the remaining components. This tool

Network description

(XML)

SDN Configuration

Software

Optimization problem 

description

(LP)

Solution

Figure 1. Architectural overview of the

developed SDN configuration methodol-
ogy.

takes a network description given in XML format and

automatically generates a Linear Programming (LP)

description of the network design problem. Once a so-

lution is provided by the external Solving Constraint

Integer Programs (SCIP) tool [6], the SDN configura-

tion software takes the solution and sends the new net-

work topology to the Floodlight controller [5]. In turn,

the Floodlight controller uses the OpenFlow protocol

to install static flows on SDN switches.

3.2 Network model

We assume a demand matrix of flows routed be-

tween access and egress switches. The routing needs

to be performed in such a way to reduce communi-

cation delays by means of selecting the shortest paths

and the largest capacity links. Flows are assumed to be

non-bifurcated multicommodity flows such that each

flow can only be routed on one path.

The undertaken approach installs flows across an

SDN pool of switches by means of an SDN controller,

e.g., Floodlight. Flows are installed on each switch

as static flows, which means that the routing rule for

each flow does not change dynamically. Accordingly,

it is important to identify the level of granularity for

the definition of a communication flow, in order to

deliver an effective strategy against malicious traf-

fic. For example, by defining a flow between IP ad-

dresses 10.1.1.0/24 and 10.2.1.0/24 all the

IP-based protocols, e.g., UDP, TCP, will be permitted

and routed across the SDN between all the hosts lo-

cated in the two networks. However, in the case that

26



an attacker initiates a new flow between two hosts lo-

cated in the aforementioned networks, this malicious

traffic will also be permitted. Consequently, a more

appropriate configuration would define a communica-

tion flow incorporating the source and destination IP

addresses, the source and destination MAC addresses,

and the protocol type. This would reduce the set of

hosts from which the attacker could generate a new

communication flow.

Obviously, in the case that the attacker has suf-

ficient knowledge on the network, he/she could ex-

ploit the permitted protocols and their vulnerabilities

for achieving his/her goals. Therefore, it needs to

be noted that the developed methodology represents

a first level of defense against attackers. Neverthe-

less, previous work demonstrated that flow whitelist-

ing can be an effective countermeasure for blocking

specific malware features. More specifically in [11] an

experiment was conducted with the Stuxnet malware

[12, 13]. A network with four hosts running Windows

XP SP2 was configured and one of the hosts was de-

liberately infected with the Stuxnet malware. Stuxnet

exploited vulnerability MS08-067 in the SMB proto-

col (used in file sharing) to copy itself onto another

station. In the case that this SMB traffic is whitelisted,

then Stuxnet can successfully replicate itself. How-

ever, [11] also showed that once it infected a host,

Stuxnet also started to initiate connections towards

www.windowsupdate.com and www.msn.com

(to test Internet connectivity). In the case that this traf-

fic is not whitelisted, it is blocked and consequently,

Stuxnet (together with other similar malware) will not

be able to contact its Command and Control servers.

3.3 Configuration problem

The network configuration problem’s parameters

are depicted in Figure 2. We define I to be the set

of flows and J to be the set of switches. Let di denote

the demand of flow i and ujl the capacity of link (j, l),
where j, l ∈ J . We assume that if switches j and l

are not connected, then ujl = 0. Then, let xA
ij be a

binary parameter with value 1 if the access end-point

of flow i is connected to switch j, and xE
ji a binary pa-

rameter with value 1 if the egress end-point of flow i

is connected to switch j. Then, we define sj to be the

capacity of switch j in terms of the maximum number

of supported forwarding rules that may be installed.

Lastly, we define tijl, a binary variable with value 1

if flow i is routed on link (j, l). The solution of the

problem will set the values of tijl in the case that flow

i is selected for routing between switches j and l (see

Figure 3).

The problem’s objective is to select the shortest

routing path for each flow, while selecting the links

ujl di

di

di

di

di+1
di+1

di+1

di+1

ujl ujl

ujl
x
A
ij

x
E
ji

sj

sj

sj

sj

sj

x
A
ij

x
E
ji

Figure 2. The optimization problem’s pa-
rameters.

t
i
jl t

i
jl

t
i
jl

t
i
jl

t
i
jl

Figure 3. The optimization problem’s

variables.

with the largest capacities:

min
∑

j,l∈J

(

1

ujl

∑

i∈I

dit
i
jl

)

. (1)

The optimization is subject to the following con-

straints. Constraints (2) denote classical multicom-

modity flow conservation constraints:

xA
ij − xE

ji −
∑

l∈J

(

tijl − tilj
)

= 0, ∀j ∈ J, i ∈ I. (2)

Equations (3) are capacity constraints used to en-

sure that the link capacity is not exceeded:

∑

i∈I

dit
i
jl ≤ ujl, ∀j, l ∈ J. (3)

Lastly, we define the switch capacity constraints to

ensure that the maximum number of forwarding rules

installed in switch j does not exceed the switch capac-

ity:

∑

i∈I,l∈J

tijl +
∑

i∈I

xE
ji ≤ sj , ∀j ∈ J. (4)

27



Table 1. Network design problem solve
time.

Switches Flows Time[ms]

5 20 12

10 20 21

20 20 35

20 50 84

20 100 231

Table 2. Communication flow installation

time.

Flows Time[ms]

5 16

20 51

80 176

3.4 SDN configuration software

The SDN configuration software is written in the

Python language and comprises of three main mod-

ules. The NetworkTopology module processes the net-

work description provided as an XML file and it builds

an internal representation of the network topology.

The ModelSolver generates an LP description of the

network design problem, it calls the external SCIP

tool, and it processes the solution. Lastly, the Con-

troller implements Floodlight’s REST API and sends

to the external controller the flows that need to be in-

stalled on the SDN switches.

4 Results

We performed several tests in order to assess the

performance of the developed approach. Accordingly,

we measured the time for solving the optimization

problem and the time for installing flows. The tests

have been performed on an emulated network topol-

ogy recreated with the Mininet network emulator [4]

on Ubuntu LTS 14.04.3 64-bit OS, and a host with

Pentium Dual Core 3.00GHz CPU and 4GB of mem-

ory.

At first, we measured the time in which SCIP

solved the network design problems of various sizes

(see Table 1). Accordingly, for a network topology in-

cluding 5 switches and 20 flows the solver executes

in 12ms. This increases up to 21ms for 10 switches

and to 35ms for 20 switches. On the other hand, by

setting a fixed number of switches of 20 and by in-

creasing the number of flows to 50, we also measure

a more increased solve time of 84ms. By further in-

creasing the size of the problem up to 100 flows, we

measure a 231ms solve time. Next, we measured the

flow installation time (see Table 2). Accordingly, for 5

flows the installation time is completed in 16ms, for 20

flows in 51ms, while for 80 flows in 176ms. These re-

sults show that the network problem solve time and the

flow installation time exhibit a linear behavior, which

is significant evidence of the scalability of the devel-

oped methodology. Nevertheless, it should be noted

that the approach may be further extended with addi-

tional constraints and parameters in order to capture

more particular aspects of communication networks

from different domains.

5 Conclusion

We developed a methodology to automatically and

optimally configure SDN networks. The approach ac-

counts for the selection of maximum capacity links,

for the selection of shortest routing paths, for the ca-

pacity and the limitations of links and SDN switches.

As a result, the developed methodology can save time

and it can assist the configuration of SDN networks.

Nonetheless, the network design problem should be

seen as a starting point for other and more complex

network configuration problems. Accordingly, the

methodology and more specifically, the developed op-

timization problem, may be extended with additional

parameters and constraints in order to embrace the par-

ticularities of different scenarios and domains.

Acknowledgment

This research was supported by the Hun-

garian Academy of Sciences under grant no.

6611/10/2015/HTMT.

References

[1] N. McKeown, T. Anderson, G. Parulkar, L. Pe-

terson, J. Rexford, S. Shenker and J.Turner,

OpenFlow: Enabling innovation in campus net-

works, ACM SIGCOMM Computer Communi-

cation Review, vol. 38(2), pp. 69–74, 2008.

[2] A. Goodney, S. Kumar, A. Ravi and Y.Cho, Ef-

ficient PMU networking with software-defined

networks, Proceedings of the Fourth IEEE Inter-

national Conference on Smart Grid Communica-

tions, pp. 378–383, 2013.

[3] E. Molina, E. Jacob, J. Matias, N.Moreira and A.

Astarloa, Using software-defined networking to

manage and control IEC 61850 based systems,

Computers and Electrical Engineering, vol. 43,

pp. 142-154, 2015.

[4] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz

and N. McKeown, Reproducible network exper-

iments using container-based emulation, in Pro-

ceedings of the 8th International Conference on

28



Emerging Networking Experiments and Tech-

nologies, (New York, NY, USA), pp. 253-264,

ACM, 2012.

[5] Project Floodlight, http://www.

projectfloodlight.org/

floodlight/ [Online; accessed April

2016].

[6] T. Achterberg, Scip: solving constraint integer

programs, Mathematical Programming Compu-

tation, vol. 1(1), pp. 1-41, 2009.

[7] Y. Fu, J. Bi, Z. Chen, K. Gao, B. Zhang, G. Chen,

and J. Wu, A hybrid hierarchical control plane

for flow-based large-scale software-defined net-

works, IEEE Transactions on Network and Ser-

vice Management, vol. 12, pp. 117-131, June

2015.

[8] D. Tuncer, M. Charalambides, S. Clayman,

and G. Pavlou, Adaptive resource management

and control in software defined networks, IEEE

Transactions on Network and Service Manage-

ment, vol. 12, pp. 18-33, March 2015.

[9] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R.

Mahajan, M. Zhang, J. Rexford and R. Watten-

hofer, Dynamic scheduling of network updates,

SIGCOMM Computer Communications Review,

vol. 44, pp. 539-550, August 2014.

[10] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Watten-

hofer and D. Maltz, zupdate: Updating data cen-

ter networks with zero loss, SIGCOMM Com-

puter Communications Review, vol. 43, pp. 411-

422, August 2013.

[11] B. Genge, D.A. Rusu, and P. Haller: A Con-

nection Pattern-based Approach to Detect Net-

work Traffic Anomalies in Critical Infrastruc-

tures. 2014 ACM European Workshop on Sys-

tem Security (EuroSec2014), Amsterdam, The

Netherlands, pp. 1-6, 2014.

[12] M. Hagerott: Stuxnet and the vital role of criti-

cal infrastructure operators and engineers. Inter-

national Journal of Critical Infrastructure Protec-

tion, vol. 7(4):244-246, 2014.

[13] B. Genge, F. Graur, and P. Haller: Experimen-

tal Assessment of Network Design Approaches

for Protecting Industrial Control Systems, Inter-

national Journal of Critical Infrastructure Protec-

tion, vol. 11, pp. 24-38, 2015.

29




